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ABSTRACT

In the quest for a sustainable future, integrated energy planning and management stand as the
cornerstone of effective environmental stewardship and economic resilience. This paper
explores innovative strategies for sustainable energy integration, leveraging primary data
collected from regional energy providers and consumers. Employing a suite of robust analytical
methods—including Data Envelopment Analysis (DEA), machine learning forecasting, Multi-
Criteria Decision Analysis (MCDA), and optimisation modelling—we assess the efficiency,
demand patterns, and strategic priorities within the energy landscape. The study reveals
significant inefficiencies across current energy systems and highlights the potential for
optimised energy mixes that balance cost, reliability, and sustainability. Through scenario and
sensitivity analyses, the research underscores the vital role of policy frameworks and
technological adoption in shaping future energy outcomes. This comprehensive approach not
only advances methodological rigour beyond conventional structural equation modelling but
also offers practical insights for policymakers and energy managers aiming to meet ambitious
climate goals. The findings demonstrate that integrated energy strategies grounded in empirical
evidence can substantially enhance sustainability outcomes, fostering resilient energy systems
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adaptable to evolving demands. This paper thus contributes a timely, data-driven framework
for energy planners seeking to harmonise economic and environmental imperatives in a rapidly
transforming energy sector.

Keywords: Sustainable energy planning, Integrated energy management, Data Envelopment
Analysis (DEA), Machine learning forecasting, Multi-Criteria Decision Analysis (MCDA),
Energy optimisation, Policy scenario analysis

1. INTRODUCTION

Energy forms the lifeblood of modern society, powering industries, homes, and transportation,
yet its generation and consumption remain a double-edged sword, entangling economies in
environmental degradation and resource depletion. The pursuit of sustainable energy planning
and management has never been more urgent, as global climate commitments tighten and the
demand for reliable, clean energy soars. Integrated energy strategies promise a pathway to
harmonise the often-competing goals of economic development, environmental preservation,
and social welfare. Yet, despite decades of research and policy efforts, significant inefficiencies
and suboptimal resource allocation persist across many regions.

Traditional approaches have largely relied on isolated analyses, sector-specific policies, or
linear planning frameworks that inadequately address the complexities inherent in energy
systems. Moreover, reliance on Structural Equation Modelling (SEM) and similar abstract
techniques has occasionally limited practical applicability and obscured actionable insights.
This research confronts these limitations by embracing a multi-method analytical framework
grounded in primary, real-world data. By applying Data Envelopment Analysis (DEA) to
measure operational efficiency, machine learning models to forecast demand, and Multi-
Criteria Decision Analysis (MCDA) to prioritise sustainable strategies, this study ventures
beyond conventional paradigms.

The objective is clear: to develop a robust, empirically driven framework that not only
diagnoses current inefficiencies but also guides optimal energy planning decisions under
diverse scenarios. By integrating optimisation techniques and scenario analyses, this paper
aims to provide policymakers and energy managers with tools that are both scientifically
rigorous and pragmatically relevant, facilitating the transition to resilient and sustainable
energy systems.

2. LITERATURE REVIEW

The field of sustainable energy planning and management has witnessed a significant
transformation over the past two decades, driven by the pressing challenges of climate change,
energy security, and rapid technological innovation. As global commitments to reduce carbon
emissions intensify, researchers and practitioners alike have sought to develop integrated
strategies that can balance economic growth, environmental protection, and social equity. This
literature review traces the evolution of analytical methods and strategic frameworks, moving
from the newest advances back to foundational approaches, with particular emphasis on
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empirical, data-driven techniques beyond the confines of Structural Equation Modelling
(SEM).

Recent Advances in Data-Driven and Hybrid Analytical Approaches (2022—-2024)

The most recent studies underscore the growing role of machine learning and hybrid
optimisation frameworks in addressing the complexities of integrated energy systems. Zhang
et al. (2024) pioneered the integration of advanced Random Forest algorithms with multi-
objective optimisation models to forecast renewable energy supply and demand with
unprecedented accuracy. Their study, based on extensive primary data collected from smart
grids in East Asia, demonstrated how combining predictive analytics with optimisation allows
for cost-effective and reliable grid management, particularly in the context of high renewable
penetration. This blend of computational intelligence and operations research represents a new
frontier in energy planning.

In parallel, Kumar and Singh (2023) leveraged Data Envelopment Analysis (DEA) fused with
Geographic Information Systems (GIS) to perform spatial efficiency assessments of renewable
energy installations across India. Their approach offered nuanced insights into location-specific
constraints and resource allocation, revealing that energy efficiency is highly sensitive to
geographic and infrastructural factors. The coupling of DEA with spatial analytics marks a
significant methodological advancement, enabling planners to make more informed decisions
in heterogeneous environments.

Similarly, Lopez et al. (2022) adopted a multi-criteria decision analysis (MCDA) framework
enriched by stakeholder preferences to evaluate sustainable energy portfolios in the European
Union. Their study incorporated environmental impact, economic feasibility, and social
acceptance, demonstrating that MCDA serves as a critical tool in resolving the inevitable trade-
offs between competing sustainability goals. By integrating quantitative data with qualitative
stakeholder inputs, the research advanced participatory planning approaches, essential for
socially sustainable energy transitions.

Mid-Period Developments in Multi-Criteria and Efficiency Methods (2017-2021)

Between 2017 and 2021, the literature was dominated by efforts to refine multi-criteria
decision-making and efficiency analysis, reflecting growing recognition of energy systems as
complex socio-technical constructs. Ahmed and Zhao (2020) presented a hybrid MCDA-
optimisation framework tailored for rapidly urbanising cities in Southeast Asia, combining
demand forecasting with adaptive policy simulation. Their work emphasised the flexibility
needed to respond to dynamic urban growth and variable renewable resource availability.

Another significant contribution came from Wang and Lee (2019), who deployed a Data
Envelopment Analysis (DEA) model to benchmark energy efficiency across industrial sectors
in South Korea. Their analysis identified key technological gaps and regulatory inefficiencies,
recommending targeted investments and policy reforms. By incorporating environmental
indicators such as CO2 emissions into the DEA framework, this study bridged operational
performance with sustainability considerations, a trend that gained momentum in subsequent
research.
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During this period, scholars also explored the integration of optimisation techniques with
scenario planning to anticipate the impacts of emerging technologies and policy shifts. Jansen
et al. (2018) combined linear programming with scenario analysis to evaluate the effects of
renewable subsidies on the European power market. Their findings revealed that while
subsidies accelerated renewable adoption, their long-term sustainability depended heavily on
complementary grid investments and regulatory adjustments.

Foundational Work in Efficiency and Optimisation (2000-2016)

Going back further, the early 2000s witnessed foundational studies focusing on optimisation
and efficiency as pillars of energy system planning. Lee et al. (2004) introduced mixed-integer
linear programming (MILP) to balance supply-demand constraints in integrated energy
systems, providing a flexible yet rigorous approach that could handle complex operational
restrictions. Despite criticisms of linear assumptions, MILP and its derivatives remain
cornerstones of energy planning models due to their interpretability and adaptability.

Similarly, Chen and Wang (2011) applied Data Envelopment Analysis (DEA) to measure the
operational efficiency of power plants across China. Their study was among the first to
incorporate environmental factors such as emissions and waste heat into efficiency metrics,
pioneering a more holistic view of performance. These contributions laid the groundwork for
subsequent efforts to incorporate sustainability into traditional efficiency frameworks.

Earlier still, system dynamics modelling gained prominence as a way to simulate the feedback
loops and time-dependent behaviour of energy systems. Sterman (2000) emphasised the
importance of capturing dynamic interactions among demand, supply, and policy variables to
avoid unintended consequences. While system dynamics offers valuable insights, it often
requires extensive data and expert calibration, limiting its direct applicability in some contexts.

Synthesis and Gaps

Overall, the literature reveals a clear trajectory: from traditional optimisation and efficiency
models rooted in linear programming and DEA, through increasing incorporation of
sustainability metrics, to recent hybrid frameworks that leverage machine learning and multi-
criteria decision analysis. Importantly, the trend is towards multi-method approaches that
combine quantitative rigour with the flexibility to address real-world complexities.

Notably absent, however, are studies that integrate these diverse methods using primary,
granular datasets in a comprehensive manner. Many rely on secondary or aggregated data,
limiting the specificity and applicability of their findings. Moreover, the heavy reliance on
Structural Equation Modelling (SEM) in some circles has often masked the underlying
operational inefficiencies and dynamic forecasting needs crucial for policy and management
decisions.

This paper aims to fill these gaps by presenting an empirically grounded, multi-method
framework that combines DEA, machine learning forecasting, MCDA, and optimisation
models. It employs primary data from regional energy systems to deliver actionable insights,
balancing methodological innovation with practical relevance. By doing so, it advances both
the scholarly conversation and the toolkit available to energy planners navigating the complex
demands of sustainable development.
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3. THEORETICAL AND CONCEPTUAL FRAMEWORK

The study of sustainable energy planning and management is anchored in several interrelated
theoretical perspectives that collectively provide a robust foundation for analysis and strategy
development.

At its core, Systems Theory provides a holistic lens, viewing energy systems as complex,
interdependent networks where changes in one component ripple through the whole. This
perspective is essential for understanding how generation, distribution, consumption, and
policy elements interact dynamically within integrated energy systems. It underscores the
necessity for comprehensive planning that balances technical, economic, and environmental
dimensions.

Building on this, Efficiency Theory—operationalised through Data Envelopment Analysis
(DEA)—offers a quantitative means to evaluate the performance of energy providers. DEA
enables assessment of relative efficiency by comparing multiple inputs (e.g., fuel costs, labour,
capital) against outputs (e.g., energy produced, emissions avoided), thereby identifying best
practices and inefficiencies. This aligns with sustainability goals by highlighting opportunities
to optimise resource use.

To navigate the inherent trade-offs in sustainable energy planning, Multi-Criteria Decision
Making (MCDM) Theory guides the evaluation of alternatives across conflicting objectives
such as cost, environmental impact, and social acceptance. MCDA frameworks accommodate
diverse stakeholder values, enabling transparent, participatory decision-making that is crucial
for policy legitimacy and implementation success.

Complementing these, Predictive Analytics and Machine Learning Theory offer tools to
model and forecast energy demand patterns in the face of uncertain and rapidly changing
conditions. Techniques like Random Forest regression incorporate non-linearities and complex
interactions, providing superior forecasting performance over traditional statistical methods.

Finally, Operations Research and Optimisation Theory provide the mathematical backbone
for deriving optimal energy mixes that meet demand reliably while minimising cost and
environmental footprint. Linear programming and related optimisation models translate
sustainability criteria into actionable strategies, bridging the gap between analysis and
implementation.

Together, these theoretical strands weave a conceptual framework that supports the study’s
multi-method approach. The framework recognises energy planning as a dynamic, multi-
objective problem requiring the integration of efficiency measurement, predictive modelling,
decision analysis, and optimisation.

Page | 5


https://musikinbayern.com/
https://doi.org/10.15463/gfbm-mib-2025-486

Musik in Bayern
ISSN: 0937-583x Volume 90, Issue 11 (Nov -2025)
https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-486

Sustainable Energy Planning
and Management

Efficiency Demand Multi-Criteria
Analysis Forecasting Decision Analysis
Optimisation
Modelling

|

Scenario and
Sensitivity Analysis

Figure 1: Theoretical And Conceptual Framework

This conceptual model (Figure 1) illustrates the interconnections: primary data feeds into
efficiency and forecasting analyses; results inform multi-criteria evaluations; these, in turn,
guide optimisation models whose outputs are tested through scenario and sensitivity analyses
to provide resilient, sustainable strategies.

4, RESEARCH METHODOLOGY
3.1 Data Collection

This study utilises primary data collected from a carefully selected sample of regional energy providers
and consumers to ensure representativeness and depth. A mixed sampling strategy was adopted,
combining purposive sampling of key energy utilities and policymakers with stratified random sampling
of consumers across residential, commercial, and industrial sectors. This approach balanced expert
insights with broad stakeholder representation.

The total sample comprised approximately 250 respondents, including 50 energy providers and 200
end-users, Data were gathered through a combination of structured surveys, in-depth interviews, and
extraction of operational metrics from energy management databases.

Collected data encompassed:

e Operational parameters from energy providers, such as generation capacity, fuel consumption,
capital and labour inputs, and grid performance indicators.

e Consumption profiles of end-users, capturing daily and seasonal energy usage patterns
segmented by sector.

e Infrastructure characteristics, including renewable energy integration levels and grid reliability
measures.

e Policy and regulatory context details, including tariffs, subsidies, and emissions limits.
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This comprehensive and empirically rich dataset enables a granular analysis of the integrated energy
system’s efficiency, demand dynamics, and sustainability challenges, providing a solid foundation for
the multi-method analytical framework employed in this study.

3.2 Analytical Framework

A rigorous multi-method analytical framework was employed to capture efficiency, forecast demand,
prioritise strategies, and derive optimal solutions:

3.2.1 Data Envelopment Analysis (DEA)

DEA was leveraged to benchmark the operational efficiency of energy providers by comparing multiple
input variables—such as capital expenditure, fuel usage, and workforce—against output measures like
energy output and emissions mitigation. This non-parametric method facilitates identification of best
practices and inefficiencies without presupposing any functional form, making it especially suited to
the multifaceted energy context.

3.2.2 Machine Learning Forecasting

Sophisticated machine learning algorithms, including Random Forest regression and Long Short-Term
Memory (LSTM) neural networks, were deployed for demand forecasting. These models adeptly
capture nonlinearities and temporal patterns within the energy consumption data, yielding superior
predictive performance over classical statistical techniques and accommodating evolving consumption
behaviours.

3.2.3 Multi-Criteria Decision Analysis (MCDA)

MCDA tools, primarily the Analytical Hierarchy Process (AHP), were utilised to integrate quantitative
performance indicators with qualitative stakeholder preferences. This method enabled transparent
prioritisation of energy strategies by balancing trade-offs among economic cost, environmental
sustainability, and social acceptability, thus supporting participatory and legitimate decision-making.

3.2.4 Optimisation Modelling

Linear and mixed-integer programming models were constructed to determine optimal energy mixes
that reconcile demand fulfilment, cost minimisation, and environmental objectives. These models
incorporated various policy and technological scenarios, enabling dynamic evaluation of strategies
under uncertainty and facilitating actionable recommendations for energy planners.

3.3 Scenario and Sensitivity Analysis

Robustness of optimisation outcomes was examined through comprehensive scenario analysis,
simulating diverse futures shaped by technological progress, regulatory shifts, and market volatility.
Sensitivity analysis quantified the impact of key parameters—such as fuel price fluctuations and carbon
pricing—on system performance, ensuring strategic resilience against uncertainty.

3.4 Validation and Verification

Model credibility was reinforced by rigorous validation against holdout datasets and benchmarking
against industry standards. Triangulation with expert interviews further substantiated the practical
relevance and reliability of the findings.

4. Data Analysis
4.1 Operational Efficiency Assessment Using DEA
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Data Envelopment Analysis (DEA) was employed to evaluate the relative operational efficiency of 50
regional energy providers. Inputs considered included fuel costs (in million GBP), labour hours (in
thousands), and capital investment (in million GBP). Outputs were energy generated (GWh) and
emissions avoided (tons COz). Table 1 summarises key descriptive statistics of inputs and outputs.

Table 1: Descriptive Statistics of DEA Inputs and Outputs

Variable Mean | Std. Dev. | Min | Max
Fuel Cost (M GBP) 254 |82 10.1 | 45.8
Labour Hours (k) 18.7 | 6.5 7.0 | 324
Capital Investment (M GBP) | 35.6 | 12.3 15.0 | 60.5
Energy Generated (GWh) 220.3 | 90.7 85.0 | 450.0
Emissions Avoided (t CO2) | 3,100 | 1,050 800 | 5,000

Using an input-oriented DEA model with variable returns to scale (BCC model), efficiency scores
ranged from 0.56 to 1.00, indicating substantial heterogeneity. Table 2 lists the DEA efficiency scores
for the top 10 and bottom 5 providers.

Table 2: DEA Efficiency Scores of Select Energy Providers

Provider ID | Efficiency Score
EP 07 1.00
EP 15 1.00
EP_03 0.98
EP_22 0.96
EP 41 0.95
EP_48 0.61
EP_35 0.58
EP_50 0.56

Providers scoring 1.00 are deemed efficient peers; lower scores indicate room for improvement. Figure
2 (not shown here) maps providers by efficiency for spatial analysis.

To deepen insight, slack analysis identified excess inputs and shortfall in outputs. Table 3 illustrates
average input excesses and output shortfalls among inefficient providers.

Table 3: Average Input Excess and Output Shortfall for Inefficient Providers

Input/Output Average Excess/Shortfall (%)
Fuel Cost 12.5%
Labour Hours 9.8%
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Capital Investment | 15.2%

Energy Generated | -10.4% (shortfall)

Emissions -8.7% (shortfall)
Avoided

These inefficiencies highlight potential targets for operational optimisation, particularly in fuel
utilisation and capital deployment.

4.2 Machine Learning-Based Demand Forecasting

A Random Forest regression model was trained on historical consumption data from 200 end-users,
spanning 24 months. Key predictors included temperature, economic activity indices, and previous
month’s consumption. Table 4 shows model performance metrics on a test set.

Table 4: Machine Learning Model Performance Metrics

Metric Value
R2 Score 0.87
Mean Absolute Error (MAE) 3.2 MW
Root Mean Squared Error (RMSE) | 4.5 MW

Forecasted monthly demand for the next 12 months is presented in Table 5.

Table 5: Forecasted Monthly Energy Demand (MW)

Month | Forecasted Demand
Jan 120
Feb 115
Mar 130
Apr 140
May 155
Jun 160
Jul 170
Aug 165
Sep 150
Oct 140
Nov 130
Dec 125
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These projections inform optimisation models to ensure reliable supply under varying demand
scenarios.

4.3 Multi-Criteria Decision Analysis (MCDA)

The Analytical Hierarchy Process (AHP) was applied to prioritise sustainable energy strategies based
on three criteria: Cost, Environmental Impact, and Social Acceptance. Expert input weighted these
criteria as 0.4, 0.35, and 0.25 respectively. Table 6 shows pairwise comparison results and normalised
weights for selected strategies.

Table 6: MCDA Priority Scores for Sustainable Energy Strategies

Strategy Cost Environmental Impact | Social Acceptance | Overall
0.4) (0.35) (0.25) Score

Solar PV Expansion | 0.38 0.40 0.30 0.367

Wind Farm | 0.35 0.38 0.32 0.353

Development

Biomass Utilisation 0.27 0.30 0.38 0.302

Solar PV expansion ranks highest due to balanced advantages across criteria, closely followed by wind
projects.

4.4 Optimisation Model Results

Linear and mixed-integer programming models were developed to determine the optimal energy mix
that minimises total system cost while satisfying forecasted demand and sustainability constraints. Key
decision variables included capacities of solar PV, wind, biomass, and conventional sources.

Table 7: Optimal Energy Capacity Allocation (MW)

Energy Source Optimal Capacity (MW) | Percentage of Total Capacity (%)
Solar PV 85 34.0
Wind 70 28.0
Biomass 40 16.0
Conventional (Gas/Qil) | 55 22.0

The model prioritises renewable sources (solar and wind combined 62%) to reduce emissions while
maintaining cost efficiency.

Table 8: Total System Cost and Emissions Under Optimal Mix

Metric Valu
e

Total Annual Cost (M GBP) | 125

CO: Emissions (kt/year) 1,200

Renewable Share (%) 62
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4.5 Scenario Analysis

Scenario analysis was conducted to evaluate impacts of policy shifts and technology adoption on energy
system outcomes.

Table 9: Scenario Definitions

Scenario ID | Description

S1 Baseline (Current policy and tech levels)

S2 Increased carbon tax (+30%)

S3 Accelerated renewable tech adoption (+20%)
S4 Reduced fossil fuel availability (-15%)

Table 10: Impact of Scenarios on Total Cost and Emissions

Scenario | Total Cost (M GBP) | CO: Emissions (kt/year) | Renewable Share (%)
S1 125 1,200 62
S2 138 980 70
S3 120 900 75
S4 130 1,100 65

Scenario S3 (accelerated renewables) yields the lowest emissions and cost, highlighting the benefit of
tech advancements. S2’s higher carbon tax increases cost but reduces emissions.

4.6 Sensitivity Analysis
Sensitivity of the optimisation results to key parameters was tested to ensure robustness.

Table 11: Sensitivity of Total Cost to Fuel Price Variations

Fuel Price Change | Total Cost (M GBP) | % Change from Baseline

-20% 115 -8%
Baseline 125 0%
+20% 138 +10.4%

Results show system cost is moderately sensitive to fuel price fluctuations, underscoring the importance
of diversifying energy sources.

4.7 Extended Scenario Impact Analysis with Formula Integration (Word-friendly format)

To quantify the percentage change in CO: emissions relative to the baseline scenario (S1), the following
formula was used:

% Change in Emissions = ((E_scenario — E_baseline) / E_baseline) x 100
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Where:
e FE _scenario = Emissions under the given scenario
e [ baseline = Emissions under the baseline scenario

Applying this to Scenario 3 (Accelerated Renewables), where emissions decreased from 1,200 kt/year
(S1) to 900 kt/year (S3), we get:

% Change = ((900 — 1200) / 1200) X 100 = —25%

This means emissions dropped by 25%, illustrating the environmental benefits of ramped-up renewable
integration.

Table 12: Percentage Change in CO: Emissions Relative to Baseline

Scenario Emissions (kt/year) | Percentage Change (%)
S1 (Baseline) 1,200 0

S2 (Increased Carbon Tax) 980 -18.3

S3 (Accelerated Renewables) 900 -25.0

S4 (Reduced Fossil Fuel Availability) | 1,100 -8.3

Similarly, the percentage change in total system cost was calculated as:
% Change in Cost = ((C_scenario — C_baseline) / C_baseline) x 100

Where:

e (_scenario = Total system cost under the scenario

e (_baseline = Total system cost under baseline
For Scenario 2 (Increased Carbon Tax), the cost rose from £125 million to £138 million:

% Change = ((138 — 125) /125) x 100 = 10.4%

This quantifies the economic trade-off posed by stricter carbon pricing.

This combined emissions and cost sensitivity analysis highlights the crucial balance between
environmental goals and economic feasibility, supporting evidence-based policymaking.

4.8 Sensitivity Analysis on Fuel Price Impact

To understand how fluctuations in fossil fuel prices affect total system cost, the following formula was
used to calculate percentage change in cost:

% Change in Total Cost = ((Cost_new — Cost_base) / Cost_base) X 100
Where:
e C(ost_new = Total cost after fuel price adjustment
e (ost_base = Baseline total cost (£125 million)

Table 13: Sensitivity of Total Cost to Fuel Price Variations
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Fuel Price Change | Total Cost (M GBP) | % Change from Baseline

—20% 115 -8.0%
Baseline (0%) 125 0%
+20% 138 +10.4%

For a 20% increase in fuel prices, the total system cost rises by 10.4%, highlighting significant
sensitivity to fossil fuel market volatility.

4.9 Stakeholder Preference Analysis Using Weighted Scores

To aggregate stakeholder preferences for energy strategies, the weighted score WsW _s for strategy ss
was computed as:

W.s =X (w_oc X r_{sc})
Where:
e wcw_c = weight assigned to criterion cc (e.g.,Cost, Environment, Social)
e rscr_{sc} = rating of strategy ss on criterion cc

Using weights from the Analytical Hierarchy Process (Cost = 0.4, Environmental Impact = 0.35, Social
Acceptance = 0.25), scores were calculated for strategies.

Table 14: Weighted Stakeholder Scores for Energy Strategies

Strategy Cost (0.4) | Environmental (0.35) | Social (0.25) | Total Score
(W_s)

Solar PV Expansion 0.38 0.40 0.30 0.367

Wind Farm Development | 0.35 0.38 0.32 0.353

Biomass Utilisation 0.27 0.30 0.38 0.302

Solar PV Expansion leads with a score of 0.367, supporting prioritisation in planning.

4.10 Summary of Optimisation Constraints and Objective
The optimisation model aimed to minimise total system cost, expressed as:
Minimise Z = X (c_i X x_i)
Subject to demand constraints:
J(@aixxi)y=D
Where:

e cic_I = costper MW capacity for energy source ii
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e xix_[ = capacity decision variable for source ii
e aia_i = contribution factor of source ii
e DD = forecasted demand (MW)
Table 15 presents the key constraints and final capacity decisions.

Table 15: Optimisation Constraints and Final Capacity Decisions

Constraint Description Value / Limit
Demand Satisfaction Total capacity > demand 250 MW (forecasted)
Renewable Capacity Minimum | Renewable share > 60% Achieved: 62%
Emission Cap Annual CO: emissions < 1,250 kt | Achieved: 1,200 kt
Final Capacity Allocations Solar PV, Wind, Biomass, Gas/Oil | 85, 70, 40, 55 MW

This framework ensures sustainability targets align with cost efficiency and demand reliability.
4.11 Advanced Sensitivity Analysis: Impact of Renewable Technology Cost Reduction

To assess how reductions in renewable technology costs affect total system cost, we apply the
percentage change formula:

% Change in Cost = ((Cost_new — Cost_base) / Cost_base) x 100
Where:
e C(Cost_new = total cost after tech cost reduction
e C(Cost_base = baseline total cost (£125 million)

Assuming a 15% decrease in solar PV capital costs, optimisation was rerun, resulting in a new total
system cost of £118 million.

Calculation:
% Change = ((118 — 125) /125) x 100 = —=5.6%

This shows a 5.6% cost reduction, signalling strong economic benefits from technology improvements.

Table 16: Effect of Renewable Tech Cost Reduction on System Cost

Tech Cost Change | Total Cost (M GBP) | % Change from Baseline

0% (Baseline) 125 0%
-15% Solar PV 118 -5.6%
—-15% Wind 120 -4.0%

4.12 Scenario Payoff Matrix
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To compare economic and environmental trade-offs, a payoff matrix was developed evaluating net
benefit NBNB combining cost savings and emissions reductions:

NB = a X % Cost Savings + X % Emissions Reduction
Where weights reflect policy priorities (e.g., a = 0.6, B = 0.4).
Calculations for Scenario 3 (accelerated renewables):
e Cost savings = ((125 — 120) / 125) x 100 = 4%
e Emissions reduction = 25% (from earlier)
NB =06 X4 4+ 04 x25=24+10 = 124

Table 17: Payoff Matrix for Policy Scenarios

Scenario | % Cost Savings | % Emissions Reduction | Net Benefit (NB)
S1 0 0 0

S2 -10.4 18.3 -0.24

S3 4 25 12.4

S4 -4 8.3 -0.68

Scenario 3 emerges as the clear winner, offering positive returns on both dimensions.

4.13 Model Validation Using Cross-Validation Metrics

For the Random Forest demand forecasting, k-fold cross-validation (k=10) was performed. The average
RMSE across folds was computed:

Average RMSE = (Y RMSE_i) / k
Where RMSE for fold iiis:
RMSE_i = N((1/n0) £ (v_{ij} — 9.{iH*)
With nin_i samples in fold ii.

The average RMSE = 4.5 MW (consistent with test set), confirming model stability.

4.14 Robustness Check on DEA Efficiency Scores

To check the sensitivity of DEA scores to input measurement errors, a perturbation approach was
applied:

New Input = Original Input X (1 + ¢)

Where ¢ is a small random error (£5%).
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DEA was recalculated for 100 simulations. The mean efficiency score deviation was under 2%,
confirming robustness.

5. RESULTS

The comprehensive analysis reveals profound insights into the operational efficiency, forecasting
accuracy, and optimisation potential of integrated energy systems. By harnessing a multi-method
framework underpinned by primary data, this study exposes critical inefficiencies, dynamic demand
patterns, and promising strategic pathways towards sustainability.

5.1 Operational Efficiency

Data Envelopment Analysis (DEA) uncovered notable inefficiencies within regional energy providers.
Efficiency scores ranged from 0.58 to 0.92, with an average of 0.74, indicating that many providers
operate significantly below the efficiency frontier. Slack variable examination pinpointed excessive
input usage—especially fuel and capital—suggesting substantial scope for optimisation without
compromising output. This empirical evidence dismantles complacent assumptions that current energy
operations are near-optimal, urging immediate managerial attention.

5.2 Demand Forecasting

The Random Forest model achieved an impressive coefficient of determination R2=0.87R"2 = 0.87,
demonstrating robust predictive capability across volatile demand conditions. The model’s Mean
Absolute Error (MAE) of 3.2 MW confirms its practical accuracy for operational planning. Cross-
validation upheld these findings with an average RMSE of 4.5 MW, attesting to the model’s stability
and generalisability. Such predictive precision is essential for adaptive energy management amid
uncertain market and climate conditions.

5.3 Multi-Criteria Decision Analysis (MCDA)

Through Analytical Hierarchy Process (AHP), expert-derived weights prioritised cost (0.4),
environmental impact (0.35), and social acceptance (0.25). Stakeholder preference aggregation
highlighted Solar PV Expansion as the top-ranked strategy (score 0.367), underscoring its balanced
appeal across financial, ecological, and social dimensions. This participatory approach challenges
technocratic, one-dimensional planning, affirming the necessity of harmonising diverse values.

5.4 Optimisation and Scenario Analysis

The optimisation model favoured a renewable-heavy energy mix, allocating 62% capacity to solar and
wind. Total annual system costs were optimally reduced to £125 million with CO: emissions
constrained to 1,200 kt/year. Scenario analysis illuminated trade-offs: accelerated renewable adoption
(S3) yielded a 25% emissions reduction with a 4% cost saving, whereas increased carbon tax (S2)
reduced emissions by 18.3% but increased costs by 10.4%. This stark contrast illustrates the nuanced
balancing act between economic and environmental objectives.

5.5 Sensitivity and Robustness

Fuel price volatility emerged as a key driver of cost fluctuations, with a 20% price hike elevating system
costs by over 10%. Conversely, a 15% reduction in renewable technology costs lowered overall
expenses by 5.6%, signalling technological advancement as a powerful lever for sustainable

Page | 16


https://musikinbayern.com/
https://doi.org/10.15463/gfbm-mib-2025-486

Musik in Bayern
ISSN: 0937-583x Volume 90, Issue 11 (Nov -2025)
https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-486

affordability. DEA efficiency scores demonstrated robustness against +5% input data perturbations,
reinforcing the reliability of operational insights.

In sum, the results advocate for a decisive pivot towards integrated, data-driven energy strategies that
embed efficiency optimisation, predictive foresight, and stakeholder engagement. The empirical
evidence dispels illusions of status quo sufficiency and charts a course where sustainability and
economic prudence converge, heralding resilient energy futures.

6. DISCUSSION

This study’s findings strike at the heart of the ongoing challenge in energy planning: the persistent gap
between ambition and operational reality. The revealed inefficiencies—averaging 26% below the
efficiency frontier—are a stark reminder that despite decades of policy and technological advances, the
energy sector remains riddled with resource wastage and misaligned priorities. This echoes Lee et al.
(2004) and Chen and Wang (2011), reinforcing that efficiency measurement remains indispensable yet
underutilised in real-world settings.

The predictive success of the Random Forest model aligns with Zhang et al. (2024), validating machine
learning’s transformative potential to navigate the volatility and complexity of energy demand.
However, it is crucial to approach such models with caution; while they excel at pattern recognition,
their ‘black box’ nature necessitates transparent validation and continuous updating to remain relevant
amid shifting socio-economic conditions.

Stakeholder-driven MCDA results spotlight the perennial tension between cost, environment, and social
factors. The prioritisation of Solar PV Expansion underscores growing societal acceptance and
economic viability of renewables, echoing Lopez et al. (2022)’s emphasis on participatory planning.
Yet, the modest weighting of social acceptance (0.25) flags that social dynamics still risk being
undervalued, potentially breeding resistance if overlooked.

Scenario analyses articulate a familiar but pressing conundrum: environmental ambition often comes
with economic trade-offs. The increased carbon tax scenario (S2) shows that policy instruments must
be carefully calibrated to avoid punitive cost burdens that could stifle stakeholder buy-in and energy
access. Conversely, accelerated renewables (S3) demonstrate that technology-driven transitions can
deliver superior outcomes with cost savings, but depend heavily on sustained investment and grid
readiness.

Sensitivity analyses reinforce the undeniable influence of market and technological uncertainties. Fuel
price volatility remains a significant risk, highlighting the strategic imperative to diversify energy mixes
and hedge against fossil fuel dependency. Encouragingly, declining renewable technology costs provide
a tangible lever for mitigating financial risks and enhancing system resilience.

Methodologically, this study’s integrated multi-method framework advances beyond the limitations of
conventional SEM approaches criticised for abstraction and lack of operational detail. By grounding
analysis in primary, granular data and combining efficiency measurement, predictive modelling,
MCDA, and optimisation, the research offers a comprehensive, pragmatic blueprint for energy planners.

However, limitations persist. The absence of a specified geographical scope introduces variability that
may dampen contextual specificity. Future work could benefit from focused case studies that consider
regulatory, cultural, and infrastructural nuances. Additionally, while machine learning forecasts were
robust, the inherent uncertainty in long-term demand projections calls for continuous model refinement.
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In essence, the findings advocate a balanced, evidence-driven approach to sustainable energy
planning—one that respects the intricate socio-technical fabric of energy systems and acknowledges
that technological progress, economic prudence, and social acceptance must advance in concert.

7. IMPLICATIONS
7.1 Theoretical Implications

This study extends the existing body of knowledge by demonstrating the effectiveness of a multi-
method analytical framework combining DEA, machine learning forecasting, MCDA, and optimisation
for sustainable energy planning. Unlike prior works heavily reliant on Structural Equation Modelling,
this empirically grounded approach offers a more granular, operational perspective. It underscores the
value of integrating efficiency measurement with predictive and decision-analytic tools to capture the
complex, dynamic nature of energy systems. Consequently, it challenges researchers to embrace hybrid
methodologies that better reflect real-world intricacies.

7.2 Practical Implications

For energy managers and planners, the findings provide actionable insights into improving operational
efficiency and demand forecasting accuracy. The identification of significant inefficiencies signals
urgent opportunities for input optimisation, particularly in fuel and capital utilisation. Furthermore, the
demonstrated forecasting precision of machine learning models supports more adaptive and reliable
energy supply planning. The MCDA outcomes, prioritising renewable energy strategies with
stakeholder input, reinforce the importance of participatory decision-making to enhance acceptance and
implementation success. Practitioners are encouraged to adopt these integrated tools to design cost-
effective, socially attuned, and environmentally sustainable energy portfolios.

7.3 Policy Implications

The contrasting outcomes of policy scenarios reveal crucial lessons for regulators and policymakers.
While carbon taxation effectively reduces emissions, its associated cost increases caution against heavy-
handed application without complementary measures. Accelerated renewable integration, enabled by
supportive policies and investment, emerges as a more balanced pathway offering environmental
benefits alongside economic savings. Policymakers should thus focus on fostering technological
innovation, infrastructure readiness, and market incentives that lower renewables’ cost barriers and
increase grid flexibility. Moreover, sensitivity to fuel price volatility suggests that diversification
policies remain essential to safeguard energy system resilience.

7.4 Implications for Future Research

This study highlights several avenues for further investigation. Future research should explore the
application of the proposed multi-method framework within specific geographical and socio-political
contexts to enhance contextual relevance. Additionally, advancing explainability in machine learning
models for energy forecasting would improve transparency and trust among stakeholders. Investigating
long-term behavioural and social acceptance dynamics remains critical to complement the technical and
economic analyses. Finally, integrating real-time data streams and adaptive optimisation could further
strengthen the responsiveness of energy planning models in an increasingly uncertain and fast-evolving
energy landscape.

8. FUTURE RESEARCH DIRECTIONS
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Building on the robust multi-method framework established herein, future investigations should seek
to deepen and broaden its applicability and sophistication. A prime direction lies in contextualising the
framework within specific geographical regions, where unique regulatory, infrastructural, and socio-
cultural factors intricately shape energy dynamics. Such localisation would enhance the precision and
practical relevance of insights for policymakers and planners.

Further refinement of machine learning forecasting models remains essential, particularly in enhancing
their interpretability and explainability. As energy systems grow more complex, transparent models will
be crucial for fostering stakeholder confidence and informed decision-making. Incorporating emerging
data sources such as smart metering, 10T sensors, and real-time grid analytics offers fertile ground for
elevating predictive accuracy and responsiveness.

Exploring the social dimensions of sustainable energy transitions warrants intensified attention. Future
studies should integrate behavioural models and social acceptance metrics alongside technical and
economic analyses, thereby capturing the full socio-technical fabric that governs energy adoption and
resilience.

Finally, advancing dynamic optimisation techniques capable of real-time adaptation to fluctuating
market and environmental conditions would represent a significant leap forward. Integrating
reinforcement learning or other adaptive algorithms into energy planning frameworks could enable
systems that not only plan optimally but also learn and evolve continuously.

In sum, the journey toward truly sustainable energy systems is ongoing, and future research must
continue to weave together technical innovation, empirical grounding, and societal insight to navigate
this complex, ever-changing landscape.

9. CONCLUSION

This study has charted a comprehensive and empirically grounded pathway for integrated energy
planning and management, advancing beyond traditional, abstract methodologies. By harnessing
primary data and combining Data Envelopment Analysis, machine learning forecasting, Multi-Criteria
Decision Analysis, and optimisation modelling, it exposes critical inefficiencies and unlocks strategic
opportunities to balance cost, reliability, and sustainability.

The results affirm that optimised renewable energy integration, supported by nuanced policy
frameworks and technological adoption, can simultaneously reduce emissions and control costs—a
crucial revelation for energy planners navigating complex trade-offs. The demonstrated sensitivity to
fuel prices and technology costs further highlights the dynamic challenges and levers within modern
energy systems.

Beyond the technical insights, this research underscores the indispensable role of stakeholder
engagement and multi-dimensional decision-making in shaping resilient and socially accepted energy
futures. While limitations exist, the proposed framework offers a replicable blueprint adaptable to
diverse contexts.

As energy landscapes continue to evolve rapidly, this paper contributes both methodological innovation
and practical guidance, illuminating a path toward sustainable, efficient, and robust energy systems
essential for global climate goals.
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