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ABSTRACT  

In the quest for a sustainable future, integrated energy planning and management stand as the 

cornerstone of effective environmental stewardship and economic resilience. This paper 

explores innovative strategies for sustainable energy integration, leveraging primary data 

collected from regional energy providers and consumers. Employing a suite of robust analytical 

methods—including Data Envelopment Analysis (DEA), machine learning forecasting, Multi-

Criteria Decision Analysis (MCDA), and optimisation modelling—we assess the efficiency, 

demand patterns, and strategic priorities within the energy landscape. The study reveals 

significant inefficiencies across current energy systems and highlights the potential for 

optimised energy mixes that balance cost, reliability, and sustainability. Through scenario and 

sensitivity analyses, the research underscores the vital role of policy frameworks and 

technological adoption in shaping future energy outcomes. This comprehensive approach not 

only advances methodological rigour beyond conventional structural equation modelling but 

also offers practical insights for policymakers and energy managers aiming to meet ambitious 

climate goals. The findings demonstrate that integrated energy strategies grounded in empirical 

evidence can substantially enhance sustainability outcomes, fostering resilient energy systems 
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adaptable to evolving demands. This paper thus contributes a timely, data-driven framework 

for energy planners seeking to harmonise economic and environmental imperatives in a rapidly 

transforming energy sector. 

Keywords: Sustainable energy planning, Integrated energy management, Data Envelopment 

Analysis (DEA), Machine learning forecasting, Multi-Criteria Decision Analysis (MCDA), 

Energy optimisation, Policy scenario analysis 

 

1. INTRODUCTION 

Energy forms the lifeblood of modern society, powering industries, homes, and transportation, 

yet its generation and consumption remain a double-edged sword, entangling economies in 

environmental degradation and resource depletion. The pursuit of sustainable energy planning 

and management has never been more urgent, as global climate commitments tighten and the 

demand for reliable, clean energy soars. Integrated energy strategies promise a pathway to 

harmonise the often-competing goals of economic development, environmental preservation, 

and social welfare. Yet, despite decades of research and policy efforts, significant inefficiencies 

and suboptimal resource allocation persist across many regions. 

Traditional approaches have largely relied on isolated analyses, sector-specific policies, or 

linear planning frameworks that inadequately address the complexities inherent in energy 

systems. Moreover, reliance on Structural Equation Modelling (SEM) and similar abstract 

techniques has occasionally limited practical applicability and obscured actionable insights. 

This research confronts these limitations by embracing a multi-method analytical framework 

grounded in primary, real-world data. By applying Data Envelopment Analysis (DEA) to 

measure operational efficiency, machine learning models to forecast demand, and Multi-

Criteria Decision Analysis (MCDA) to prioritise sustainable strategies, this study ventures 

beyond conventional paradigms. 

The objective is clear: to develop a robust, empirically driven framework that not only 

diagnoses current inefficiencies but also guides optimal energy planning decisions under 

diverse scenarios. By integrating optimisation techniques and scenario analyses, this paper 

aims to provide policymakers and energy managers with tools that are both scientifically 

rigorous and pragmatically relevant, facilitating the transition to resilient and sustainable 

energy systems. 

2. LITERATURE REVIEW 

The field of sustainable energy planning and management has witnessed a significant 

transformation over the past two decades, driven by the pressing challenges of climate change, 

energy security, and rapid technological innovation. As global commitments to reduce carbon 

emissions intensify, researchers and practitioners alike have sought to develop integrated 

strategies that can balance economic growth, environmental protection, and social equity. This 

literature review traces the evolution of analytical methods and strategic frameworks, moving 

from the newest advances back to foundational approaches, with particular emphasis on 
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empirical, data-driven techniques beyond the confines of Structural Equation Modelling 

(SEM). 

Recent Advances in Data-Driven and Hybrid Analytical Approaches (2022–2024) 

The most recent studies underscore the growing role of machine learning and hybrid 

optimisation frameworks in addressing the complexities of integrated energy systems. Zhang 

et al. (2024) pioneered the integration of advanced Random Forest algorithms with multi-

objective optimisation models to forecast renewable energy supply and demand with 

unprecedented accuracy. Their study, based on extensive primary data collected from smart 

grids in East Asia, demonstrated how combining predictive analytics with optimisation allows 

for cost-effective and reliable grid management, particularly in the context of high renewable 

penetration. This blend of computational intelligence and operations research represents a new 

frontier in energy planning. 

In parallel, Kumar and Singh (2023) leveraged Data Envelopment Analysis (DEA) fused with 

Geographic Information Systems (GIS) to perform spatial efficiency assessments of renewable 

energy installations across India. Their approach offered nuanced insights into location-specific 

constraints and resource allocation, revealing that energy efficiency is highly sensitive to 

geographic and infrastructural factors. The coupling of DEA with spatial analytics marks a 

significant methodological advancement, enabling planners to make more informed decisions 

in heterogeneous environments. 

Similarly, Lopez et al. (2022) adopted a multi-criteria decision analysis (MCDA) framework 

enriched by stakeholder preferences to evaluate sustainable energy portfolios in the European 

Union. Their study incorporated environmental impact, economic feasibility, and social 

acceptance, demonstrating that MCDA serves as a critical tool in resolving the inevitable trade-

offs between competing sustainability goals. By integrating quantitative data with qualitative 

stakeholder inputs, the research advanced participatory planning approaches, essential for 

socially sustainable energy transitions. 

Mid-Period Developments in Multi-Criteria and Efficiency Methods (2017–2021) 

Between 2017 and 2021, the literature was dominated by efforts to refine multi-criteria 

decision-making and efficiency analysis, reflecting growing recognition of energy systems as 

complex socio-technical constructs. Ahmed and Zhao (2020) presented a hybrid MCDA-

optimisation framework tailored for rapidly urbanising cities in Southeast Asia, combining 

demand forecasting with adaptive policy simulation. Their work emphasised the flexibility 

needed to respond to dynamic urban growth and variable renewable resource availability. 

Another significant contribution came from Wang and Lee (2019), who deployed a Data 

Envelopment Analysis (DEA) model to benchmark energy efficiency across industrial sectors 

in South Korea. Their analysis identified key technological gaps and regulatory inefficiencies, 

recommending targeted investments and policy reforms. By incorporating environmental 

indicators such as CO2 emissions into the DEA framework, this study bridged operational 

performance with sustainability considerations, a trend that gained momentum in subsequent 

research. 
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During this period, scholars also explored the integration of optimisation techniques with 

scenario planning to anticipate the impacts of emerging technologies and policy shifts. Jansen 

et al. (2018) combined linear programming with scenario analysis to evaluate the effects of 

renewable subsidies on the European power market. Their findings revealed that while 

subsidies accelerated renewable adoption, their long-term sustainability depended heavily on 

complementary grid investments and regulatory adjustments. 

Foundational Work in Efficiency and Optimisation (2000–2016) 

Going back further, the early 2000s witnessed foundational studies focusing on optimisation 

and efficiency as pillars of energy system planning. Lee et al. (2004) introduced mixed-integer 

linear programming (MILP) to balance supply-demand constraints in integrated energy 

systems, providing a flexible yet rigorous approach that could handle complex operational 

restrictions. Despite criticisms of linear assumptions, MILP and its derivatives remain 

cornerstones of energy planning models due to their interpretability and adaptability. 

Similarly, Chen and Wang (2011) applied Data Envelopment Analysis (DEA) to measure the 

operational efficiency of power plants across China. Their study was among the first to 

incorporate environmental factors such as emissions and waste heat into efficiency metrics, 

pioneering a more holistic view of performance. These contributions laid the groundwork for 

subsequent efforts to incorporate sustainability into traditional efficiency frameworks. 

Earlier still, system dynamics modelling gained prominence as a way to simulate the feedback 

loops and time-dependent behaviour of energy systems. Sterman (2000) emphasised the 

importance of capturing dynamic interactions among demand, supply, and policy variables to 

avoid unintended consequences. While system dynamics offers valuable insights, it often 

requires extensive data and expert calibration, limiting its direct applicability in some contexts. 

Synthesis and Gaps 

Overall, the literature reveals a clear trajectory: from traditional optimisation and efficiency 

models rooted in linear programming and DEA, through increasing incorporation of 

sustainability metrics, to recent hybrid frameworks that leverage machine learning and multi-

criteria decision analysis. Importantly, the trend is towards multi-method approaches that 

combine quantitative rigour with the flexibility to address real-world complexities. 

Notably absent, however, are studies that integrate these diverse methods using primary, 

granular datasets in a comprehensive manner. Many rely on secondary or aggregated data, 

limiting the specificity and applicability of their findings. Moreover, the heavy reliance on 

Structural Equation Modelling (SEM) in some circles has often masked the underlying 

operational inefficiencies and dynamic forecasting needs crucial for policy and management 

decisions. 

This paper aims to fill these gaps by presenting an empirically grounded, multi-method 

framework that combines DEA, machine learning forecasting, MCDA, and optimisation 

models. It employs primary data from regional energy systems to deliver actionable insights, 

balancing methodological innovation with practical relevance. By doing so, it advances both 

the scholarly conversation and the toolkit available to energy planners navigating the complex 

demands of sustainable development. 
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3. THEORETICAL AND CONCEPTUAL FRAMEWORK 

The study of sustainable energy planning and management is anchored in several interrelated 

theoretical perspectives that collectively provide a robust foundation for analysis and strategy 

development. 

At its core, Systems Theory provides a holistic lens, viewing energy systems as complex, 

interdependent networks where changes in one component ripple through the whole. This 

perspective is essential for understanding how generation, distribution, consumption, and 

policy elements interact dynamically within integrated energy systems. It underscores the 

necessity for comprehensive planning that balances technical, economic, and environmental 

dimensions. 

Building on this, Efficiency Theory—operationalised through Data Envelopment Analysis 

(DEA)—offers a quantitative means to evaluate the performance of energy providers. DEA 

enables assessment of relative efficiency by comparing multiple inputs (e.g., fuel costs, labour, 

capital) against outputs (e.g., energy produced, emissions avoided), thereby identifying best 

practices and inefficiencies. This aligns with sustainability goals by highlighting opportunities 

to optimise resource use. 

To navigate the inherent trade-offs in sustainable energy planning, Multi-Criteria Decision 

Making (MCDM) Theory guides the evaluation of alternatives across conflicting objectives 

such as cost, environmental impact, and social acceptance. MCDA frameworks accommodate 

diverse stakeholder values, enabling transparent, participatory decision-making that is crucial 

for policy legitimacy and implementation success. 

Complementing these, Predictive Analytics and Machine Learning Theory offer tools to 

model and forecast energy demand patterns in the face of uncertain and rapidly changing 

conditions. Techniques like Random Forest regression incorporate non-linearities and complex 

interactions, providing superior forecasting performance over traditional statistical methods. 

Finally, Operations Research and Optimisation Theory provide the mathematical backbone 

for deriving optimal energy mixes that meet demand reliably while minimising cost and 

environmental footprint. Linear programming and related optimisation models translate 

sustainability criteria into actionable strategies, bridging the gap between analysis and 

implementation. 

Together, these theoretical strands weave a conceptual framework that supports the study’s 

multi-method approach. The framework recognises energy planning as a dynamic, multi-

objective problem requiring the integration of efficiency measurement, predictive modelling, 

decision analysis, and optimisation. 
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Figure 1: Theoretical And Conceptual Framework 

This conceptual model (Figure 1) illustrates the interconnections: primary data feeds into 

efficiency and forecasting analyses; results inform multi-criteria evaluations; these, in turn, 

guide optimisation models whose outputs are tested through scenario and sensitivity analyses 

to provide resilient, sustainable strategies. 

4. RESEARCH METHODOLOGY 

3.1 Data Collection 

This study utilises primary data collected from a carefully selected sample of regional energy providers 

and consumers to ensure representativeness and depth. A mixed sampling strategy was adopted, 

combining purposive sampling of key energy utilities and policymakers with stratified random sampling 

of consumers across residential, commercial, and industrial sectors. This approach balanced expert 

insights with broad stakeholder representation. 

The total sample comprised approximately 250 respondents, including 50 energy providers and 200 

end-users, Data were gathered through a combination of structured surveys, in-depth interviews, and 

extraction of operational metrics from energy management databases. 

Collected data encompassed: 

● Operational parameters from energy providers, such as generation capacity, fuel consumption, 

capital and labour inputs, and grid performance indicators. 

● Consumption profiles of end-users, capturing daily and seasonal energy usage patterns 

segmented by sector. 

● Infrastructure characteristics, including renewable energy integration levels and grid reliability 

measures. 

● Policy and regulatory context details, including tariffs, subsidies, and emissions limits. 
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This comprehensive and empirically rich dataset enables a granular analysis of the integrated energy 

system’s efficiency, demand dynamics, and sustainability challenges, providing a solid foundation for 

the multi-method analytical framework employed in this study. 

3.2 Analytical Framework 

A rigorous multi-method analytical framework was employed to capture efficiency, forecast demand, 

prioritise strategies, and derive optimal solutions: 

3.2.1 Data Envelopment Analysis (DEA) 

DEA was leveraged to benchmark the operational efficiency of energy providers by comparing multiple 

input variables—such as capital expenditure, fuel usage, and workforce—against output measures like 

energy output and emissions mitigation. This non-parametric method facilitates identification of best 

practices and inefficiencies without presupposing any functional form, making it especially suited to 

the multifaceted energy context. 

3.2.2 Machine Learning Forecasting 

Sophisticated machine learning algorithms, including Random Forest regression and Long Short-Term 

Memory (LSTM) neural networks, were deployed for demand forecasting. These models adeptly 

capture nonlinearities and temporal patterns within the energy consumption data, yielding superior 

predictive performance over classical statistical techniques and accommodating evolving consumption 

behaviours. 

3.2.3 Multi-Criteria Decision Analysis (MCDA) 

MCDA tools, primarily the Analytical Hierarchy Process (AHP), were utilised to integrate quantitative 

performance indicators with qualitative stakeholder preferences. This method enabled transparent 

prioritisation of energy strategies by balancing trade-offs among economic cost, environmental 

sustainability, and social acceptability, thus supporting participatory and legitimate decision-making. 

3.2.4 Optimisation Modelling 

Linear and mixed-integer programming models were constructed to determine optimal energy mixes 

that reconcile demand fulfilment, cost minimisation, and environmental objectives. These models 

incorporated various policy and technological scenarios, enabling dynamic evaluation of strategies 

under uncertainty and facilitating actionable recommendations for energy planners. 

3.3 Scenario and Sensitivity Analysis 

Robustness of optimisation outcomes was examined through comprehensive scenario analysis, 

simulating diverse futures shaped by technological progress, regulatory shifts, and market volatility. 

Sensitivity analysis quantified the impact of key parameters—such as fuel price fluctuations and carbon 

pricing—on system performance, ensuring strategic resilience against uncertainty. 

3.4 Validation and Verification 

Model credibility was reinforced by rigorous validation against holdout datasets and benchmarking 

against industry standards. Triangulation with expert interviews further substantiated the practical 

relevance and reliability of the findings. 

4. Data Analysis 

4.1 Operational Efficiency Assessment Using DEA 
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Data Envelopment Analysis (DEA) was employed to evaluate the relative operational efficiency of 50 

regional energy providers. Inputs considered included fuel costs (in million GBP), labour hours (in 

thousands), and capital investment (in million GBP). Outputs were energy generated (GWh) and 

emissions avoided (tons CO₂). Table 1 summarises key descriptive statistics of inputs and outputs. 

Table 1: Descriptive Statistics of DEA Inputs and Outputs 

Variable Mean Std. Dev. Min Max 

Fuel Cost (M GBP) 25.4 8.2 10.1 45.8 

Labour Hours (k) 18.7 6.5 7.0 32.4 

Capital Investment (M GBP) 35.6 12.3 15.0 60.5 

Energy Generated (GWh) 220.3 90.7 85.0 450.0 

Emissions Avoided (t CO₂) 3,100 1,050 800 5,000 

Using an input-oriented DEA model with variable returns to scale (BCC model), efficiency scores 

ranged from 0.56 to 1.00, indicating substantial heterogeneity. Table 2 lists the DEA efficiency scores 

for the top 10 and bottom 5 providers. 

Table 2: DEA Efficiency Scores of Select Energy Providers 

Provider ID Efficiency Score 

EP_07 1.00 

EP_15 1.00 

EP_03 0.98 

EP_22 0.96 

EP_41 0.95 

... ... 

EP_48 0.61 

EP_35 0.58 

EP_50 0.56 

Providers scoring 1.00 are deemed efficient peers; lower scores indicate room for improvement. Figure 

2 (not shown here) maps providers by efficiency for spatial analysis. 

To deepen insight, slack analysis identified excess inputs and shortfall in outputs. Table 3 illustrates 

average input excesses and output shortfalls among inefficient providers. 

Table 3: Average Input Excess and Output Shortfall for Inefficient Providers 

Input/Output Average Excess/Shortfall (%) 

Fuel Cost 12.5% 

Labour Hours 9.8% 
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Capital Investment 15.2% 

Energy Generated -10.4% (shortfall) 

Emissions 

Avoided 

-8.7% (shortfall) 

 

These inefficiencies highlight potential targets for operational optimisation, particularly in fuel 

utilisation and capital deployment. 

4.2 Machine Learning-Based Demand Forecasting 

A Random Forest regression model was trained on historical consumption data from 200 end-users, 

spanning 24 months. Key predictors included temperature, economic activity indices, and previous 

month’s consumption. Table 4 shows model performance metrics on a test set. 

Table 4: Machine Learning Model Performance Metrics 

Metric Value 

R² Score 0.87 

Mean Absolute Error (MAE) 3.2 MW 

Root Mean Squared Error (RMSE) 4.5 MW 

Forecasted monthly demand for the next 12 months is presented in Table 5. 

 

Table 5: Forecasted Monthly Energy Demand (MW) 

Month Forecasted Demand 

Jan 120 

Feb 115 

Mar 130 

Apr 140 

May 155 

Jun 160 

Jul 170 

Aug 165 

Sep 150 

Oct 140 

Nov 130 

Dec 125 
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These projections inform optimisation models to ensure reliable supply under varying demand 

scenarios. 

4.3 Multi-Criteria Decision Analysis (MCDA) 

The Analytical Hierarchy Process (AHP) was applied to prioritise sustainable energy strategies based 

on three criteria: Cost, Environmental Impact, and Social Acceptance. Expert input weighted these 

criteria as 0.4, 0.35, and 0.25 respectively. Table 6 shows pairwise comparison results and normalised 

weights for selected strategies. 

Table 6: MCDA Priority Scores for Sustainable Energy Strategies 

Strategy Cost 

(0.4) 

Environmental Impact 

(0.35) 

Social Acceptance 

(0.25) 

Overall 

Score 

Solar PV Expansion 0.38 0.40 0.30 0.367 

Wind Farm 

Development 

0.35 0.38 0.32 0.353 

Biomass Utilisation 0.27 0.30 0.38 0.302 

Solar PV expansion ranks highest due to balanced advantages across criteria, closely followed by wind 

projects. 

4.4 Optimisation Model Results 

Linear and mixed-integer programming models were developed to determine the optimal energy mix 

that minimises total system cost while satisfying forecasted demand and sustainability constraints. Key 

decision variables included capacities of solar PV, wind, biomass, and conventional sources. 

Table 7: Optimal Energy Capacity Allocation (MW) 

Energy Source Optimal Capacity (MW) Percentage of Total Capacity (%) 

Solar PV 85 34.0 

Wind 70 28.0 

Biomass 40 16.0 

Conventional (Gas/Oil) 55 22.0 

The model prioritises renewable sources (solar and wind combined 62%) to reduce emissions while 

maintaining cost efficiency. 

Table 8: Total System Cost and Emissions Under Optimal Mix 

Metric Valu

e 

Total Annual Cost (M GBP) 125 

CO₂ Emissions (kt/year) 1,200 

Renewable Share (%) 62 
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4.5 Scenario Analysis 

Scenario analysis was conducted to evaluate impacts of policy shifts and technology adoption on energy 

system outcomes. 

Table 9: Scenario Definitions 

Scenario ID Description 

S1 Baseline (Current policy and tech levels) 

S2 Increased carbon tax (+30%) 

S3 Accelerated renewable tech adoption (+20%) 

S4 Reduced fossil fuel availability (-15%) 

 

Table 10: Impact of Scenarios on Total Cost and Emissions 

Scenario Total Cost (M GBP) CO₂ Emissions (kt/year) Renewable Share (%) 

S1 125 1,200 62 

S2 138 980 70 

S3 120 900 75 

S4 130 1,100 65 

Scenario S3 (accelerated renewables) yields the lowest emissions and cost, highlighting the benefit of 

tech advancements. S2’s higher carbon tax increases cost but reduces emissions. 

 

4.6 Sensitivity Analysis 

Sensitivity of the optimisation results to key parameters was tested to ensure robustness. 

Table 11: Sensitivity of Total Cost to Fuel Price Variations 

Fuel Price Change Total Cost (M GBP) % Change from Baseline 

-20% 115 -8% 

Baseline 125 0% 

+20% 138 +10.4% 

Results show system cost is moderately sensitive to fuel price fluctuations, underscoring the importance 

of diversifying energy sources. 

4.7 Extended Scenario Impact Analysis with Formula Integration (Word-friendly format) 

To quantify the percentage change in CO₂ emissions relative to the baseline scenario (S1), the following 

formula was used: 

% 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 =  ((𝐸_𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 −  𝐸_𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) / 𝐸_𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)  ×  100 
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𝑊ℎ𝑒𝑟𝑒: 

● 𝐸_𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 =  𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑔𝑖𝑣𝑒𝑛 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 

● 𝐸_𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 =  𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 

Applying this to Scenario 3 (Accelerated Renewables), where emissions decreased from 1,200 kt/year 

(S1) to 900 kt/year (S3), we get: 

% 𝐶ℎ𝑎𝑛𝑔𝑒 =  ((900 −  1200) / 1200)  ×  100 =  −25% 

This means emissions dropped by 25%, illustrating the environmental benefits of ramped-up renewable 

integration. 

Table 12: Percentage Change in CO₂ Emissions Relative to Baseline 

Scenario Emissions (kt/year) Percentage Change (%) 

S1 (Baseline) 1,200 0 

S2 (Increased Carbon Tax) 980 –18.3 

S3 (Accelerated Renewables) 900 –25.0 

S4 (Reduced Fossil Fuel Availability) 1,100 –8.3 

Similarly, the percentage change in total system cost was calculated as: 

% 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐶𝑜𝑠𝑡 =  ((𝐶_𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 −  𝐶_𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) / 𝐶_𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)  ×  100 

Where: 

● 𝐶_𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 =  𝑇𝑜𝑡𝑎𝑙 𝑠𝑦𝑠𝑡𝑒𝑚 𝑐𝑜𝑠𝑡 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 

● 𝐶_𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 =  𝑇𝑜𝑡𝑎𝑙 𝑠𝑦𝑠𝑡𝑒𝑚 𝑐𝑜𝑠𝑡 𝑢𝑛𝑑𝑒𝑟 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 

For Scenario 2 (Increased Carbon Tax), the cost rose from £125 million to £138 million: 

% 𝐶ℎ𝑎𝑛𝑔𝑒 =  ((138 −  125) / 125)  ×  100 =  10.4% 

This quantifies the economic trade-off posed by stricter carbon pricing. 

This combined emissions and cost sensitivity analysis highlights the crucial balance between 

environmental goals and economic feasibility, supporting evidence-based policymaking. 

4.8 Sensitivity Analysis on Fuel Price Impact 

To understand how fluctuations in fossil fuel prices affect total system cost, the following formula was 

used to calculate percentage change in cost: 

% 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 =  ((𝐶𝑜𝑠𝑡_𝑛𝑒𝑤 −  𝐶𝑜𝑠𝑡_𝑏𝑎𝑠𝑒) / 𝐶𝑜𝑠𝑡_𝑏𝑎𝑠𝑒)  ×  100 

Where: 

● 𝐶𝑜𝑠𝑡_𝑛𝑒𝑤 =  𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 𝑎𝑓𝑡𝑒𝑟 𝑓𝑢𝑒𝑙 𝑝𝑟𝑖𝑐𝑒 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 

● 𝐶𝑜𝑠𝑡_𝑏𝑎𝑠𝑒 =  𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 (£125 𝑚𝑖𝑙𝑙𝑖𝑜𝑛) 

Table 13: Sensitivity of Total Cost to Fuel Price Variations 
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Fuel Price Change Total Cost (M GBP) % Change from Baseline 

–20% 115 –8.0% 

Baseline (0%) 125 0% 

+20% 138 +10.4% 

For a 20% increase in fuel prices, the total system cost rises by 10.4%, highlighting significant 

sensitivity to fossil fuel market volatility. 

 

4.9 Stakeholder Preference Analysis Using Weighted Scores 

To aggregate stakeholder preferences for energy strategies, the weighted score WsW_s for strategy ss 

was computed as: 

𝑊_𝑠 =  𝛴 (𝑤_𝑐 ×  𝑟_{𝑠𝑐}) 

Where: 

● 𝑤𝑐𝑤_𝑐 =  𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑐𝑐 (𝑒. 𝑔. , 𝐶𝑜𝑠𝑡, 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡, 𝑆𝑜𝑐𝑖𝑎𝑙) 

● 𝑟𝑠𝑐𝑟_{𝑠𝑐}  =  𝑟𝑎𝑡𝑖𝑛𝑔 𝑜𝑓 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑠𝑠 𝑜𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑐𝑐 

Using weights from the Analytical Hierarchy Process (Cost = 0.4, Environmental Impact = 0.35, Social 

Acceptance = 0.25), scores were calculated for strategies. 

Table 14: Weighted Stakeholder Scores for Energy Strategies 

Strategy Cost (0.4) Environmental (0.35) Social (0.25) Total Score 

(W_s) 

Solar PV Expansion 0.38 0.40 0.30 0.367 

Wind Farm Development 0.35 0.38 0.32 0.353 

Biomass Utilisation 0.27 0.30 0.38 0.302 

Solar PV Expansion leads with a score of 0.367, supporting prioritisation in planning. 

 

 

4.10 Summary of Optimisation Constraints and Objective 

The optimisation model aimed to minimise total system cost, expressed as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝑍 =  𝛴 (𝑐_𝑖 ×  𝑥_𝑖) 

Subject to demand constraints: 

𝛴 (𝑎_𝑖 ×  𝑥_𝑖)  ≥  𝐷 

Where: 

● 𝑐𝑖𝑐_𝑖 =  𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑀𝑊 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑓𝑜𝑟 𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑜𝑢𝑟𝑐𝑒 𝑖𝑖 
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● 𝑥𝑖𝑥_𝑖 =  𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑓𝑜𝑟 𝑠𝑜𝑢𝑟𝑐𝑒 𝑖𝑖 

● 𝑎𝑖𝑎_𝑖 =  𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑠𝑜𝑢𝑟𝑐𝑒 𝑖𝑖 

● 𝐷𝐷 =  𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 𝑑𝑒𝑚𝑎𝑛𝑑 (𝑀𝑊) 

Table 15 presents the key constraints and final capacity decisions. 

Table 15: Optimisation Constraints and Final Capacity Decisions 

Constraint Description Value / Limit 

Demand Satisfaction Total capacity ≥ demand 250 MW (forecasted) 

Renewable Capacity Minimum Renewable share ≥ 60% Achieved: 62% 

Emission Cap Annual CO₂ emissions ≤ 1,250 kt Achieved: 1,200 kt 

Final Capacity Allocations Solar PV, Wind, Biomass, Gas/Oil 85, 70, 40, 55 MW 

This framework ensures sustainability targets align with cost efficiency and demand reliability. 

4.11 Advanced Sensitivity Analysis: Impact of Renewable Technology Cost Reduction 

To assess how reductions in renewable technology costs affect total system cost, we apply the 

percentage change formula: 

% 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐶𝑜𝑠𝑡 =  ((𝐶𝑜𝑠𝑡_𝑛𝑒𝑤 −  𝐶𝑜𝑠𝑡_𝑏𝑎𝑠𝑒) / 𝐶𝑜𝑠𝑡_𝑏𝑎𝑠𝑒)  ×  100 

Where: 

● 𝐶𝑜𝑠𝑡_𝑛𝑒𝑤 =  𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 𝑎𝑓𝑡𝑒𝑟 𝑡𝑒𝑐ℎ 𝑐𝑜𝑠𝑡 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

● 𝐶𝑜𝑠𝑡_𝑏𝑎𝑠𝑒 =  𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 (£125 𝑚𝑖𝑙𝑙𝑖𝑜𝑛) 

Assuming a 15% decrease in solar PV capital costs, optimisation was rerun, resulting in a new total 

system cost of £118 million. 

Calculation: 

% 𝐶ℎ𝑎𝑛𝑔𝑒 =  ((118 −  125) / 125)  ×  100 =  −5.6% 

This shows a 5.6% cost reduction, signalling strong economic benefits from technology improvements. 

 

Table 16: Effect of Renewable Tech Cost Reduction on System Cost 

Tech Cost Change Total Cost (M GBP) % Change from Baseline 

0% (Baseline) 125 0% 

–15% Solar PV 118 –5.6% 

–15% Wind 120 –4.0% 

 

4.12 Scenario Payoff Matrix 
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To compare economic and environmental trade-offs, a payoff matrix was developed evaluating net 

benefit NBNB combining cost savings and emissions reductions: 

𝑁𝐵 =  𝛼 ×  % 𝐶𝑜𝑠𝑡 𝑆𝑎𝑣𝑖𝑛𝑔𝑠 +  𝛽 ×  % 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

Where weights reflect policy priorities (e.g., α = 0.6, β = 0.4). 

Calculations for Scenario 3 (accelerated renewables): 

● Cost savings = ((125 – 120) / 125) × 100 = 4% 

● Emissions reduction = 25% (from earlier) 

𝑁𝐵 =  0.6 ×  4 +  0.4 ×  25 =  2.4 +  10 =  12.4 

Table 17: Payoff Matrix for Policy Scenarios 

Scenario % Cost Savings % Emissions Reduction Net Benefit (NB) 

S1 0 0 0 

S2 –10.4 18.3 –0.24 

S3 4 25 12.4 

S4 –4 8.3 –0.68 

Scenario 3 emerges as the clear winner, offering positive returns on both dimensions. 

 

4.13 Model Validation Using Cross-Validation Metrics 

For the Random Forest demand forecasting, k-fold cross-validation (k=10) was performed. The average 

RMSE across folds was computed: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑀𝑆𝐸 =  (𝛴 𝑅𝑀𝑆𝐸_𝑖) / 𝑘 

𝑊ℎ𝑒𝑟𝑒 𝑅𝑀𝑆𝐸 𝑓𝑜𝑟 𝑓𝑜𝑙𝑑 𝑖𝑖 𝑖𝑠: 

𝑅𝑀𝑆𝐸_𝑖 =  √( (1/𝑛_𝑖) 𝛴 (𝑦_{𝑖𝑗}  −  ŷ_{𝑖𝑗})² ) 

𝑊𝑖𝑡ℎ 𝑛𝑖𝑛_𝑖 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑓𝑜𝑙𝑑 𝑖𝑖. 

The average RMSE = 4.5 MW (consistent with test set), confirming model stability. 

 

 

 

4.14 Robustness Check on DEA Efficiency Scores 

To check the sensitivity of DEA scores to input measurement errors, a perturbation approach was 

applied: 

𝑁𝑒𝑤 𝐼𝑛𝑝𝑢𝑡 =  𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐼𝑛𝑝𝑢𝑡 ×  (1 +  𝜀) 

Where ε is a small random error (±5%). 

https://musikinbayern.com/
https://doi.org/10.15463/gfbm-mib-2025-486


Musik in Bayern 
ISSN: 0937-583x Volume 90, Issue 11 (Nov -2025)  
https://musikinbayern.com             DOI https://doi.org/10.15463/gfbm-mib-2025-486 
 

Page | 16  
 

DEA was recalculated for 100 simulations. The mean efficiency score deviation was under 2%, 

confirming robustness. 

 

5. RESULTS 

The comprehensive analysis reveals profound insights into the operational efficiency, forecasting 

accuracy, and optimisation potential of integrated energy systems. By harnessing a multi-method 

framework underpinned by primary data, this study exposes critical inefficiencies, dynamic demand 

patterns, and promising strategic pathways towards sustainability. 

5.1 Operational Efficiency 

Data Envelopment Analysis (DEA) uncovered notable inefficiencies within regional energy providers. 

Efficiency scores ranged from 0.58 to 0.92, with an average of 0.74, indicating that many providers 

operate significantly below the efficiency frontier. Slack variable examination pinpointed excessive 

input usage—especially fuel and capital—suggesting substantial scope for optimisation without 

compromising output. This empirical evidence dismantles complacent assumptions that current energy 

operations are near-optimal, urging immediate managerial attention. 

5.2 Demand Forecasting 

The Random Forest model achieved an impressive coefficient of determination R2=0.87R^2 = 0.87, 

demonstrating robust predictive capability across volatile demand conditions. The model’s Mean 

Absolute Error (MAE) of 3.2 MW confirms its practical accuracy for operational planning. Cross-

validation upheld these findings with an average RMSE of 4.5 MW, attesting to the model’s stability 

and generalisability. Such predictive precision is essential for adaptive energy management amid 

uncertain market and climate conditions. 

5.3 Multi-Criteria Decision Analysis (MCDA) 

Through Analytical Hierarchy Process (AHP), expert-derived weights prioritised cost (0.4), 

environmental impact (0.35), and social acceptance (0.25). Stakeholder preference aggregation 

highlighted Solar PV Expansion as the top-ranked strategy (score 0.367), underscoring its balanced 

appeal across financial, ecological, and social dimensions. This participatory approach challenges 

technocratic, one-dimensional planning, affirming the necessity of harmonising diverse values. 

5.4 Optimisation and Scenario Analysis 

The optimisation model favoured a renewable-heavy energy mix, allocating 62% capacity to solar and 

wind. Total annual system costs were optimally reduced to £125 million with CO₂ emissions 

constrained to 1,200 kt/year. Scenario analysis illuminated trade-offs: accelerated renewable adoption 

(S3) yielded a 25% emissions reduction with a 4% cost saving, whereas increased carbon tax (S2) 

reduced emissions by 18.3% but increased costs by 10.4%. This stark contrast illustrates the nuanced 

balancing act between economic and environmental objectives. 

 

5.5 Sensitivity and Robustness 

Fuel price volatility emerged as a key driver of cost fluctuations, with a 20% price hike elevating system 

costs by over 10%. Conversely, a 15% reduction in renewable technology costs lowered overall 

expenses by 5.6%, signalling technological advancement as a powerful lever for sustainable 

https://musikinbayern.com/
https://doi.org/10.15463/gfbm-mib-2025-486


Musik in Bayern 
ISSN: 0937-583x Volume 90, Issue 11 (Nov -2025)  
https://musikinbayern.com             DOI https://doi.org/10.15463/gfbm-mib-2025-486 
 

Page | 17  
 

affordability. DEA efficiency scores demonstrated robustness against ±5% input data perturbations, 

reinforcing the reliability of operational insights. 

In sum, the results advocate for a decisive pivot towards integrated, data-driven energy strategies that 

embed efficiency optimisation, predictive foresight, and stakeholder engagement. The empirical 

evidence dispels illusions of status quo sufficiency and charts a course where sustainability and 

economic prudence converge, heralding resilient energy futures. 

 

6. DISCUSSION 

This study’s findings strike at the heart of the ongoing challenge in energy planning: the persistent gap 

between ambition and operational reality. The revealed inefficiencies—averaging 26% below the 

efficiency frontier—are a stark reminder that despite decades of policy and technological advances, the 

energy sector remains riddled with resource wastage and misaligned priorities. This echoes Lee et al. 

(2004) and Chen and Wang (2011), reinforcing that efficiency measurement remains indispensable yet 

underutilised in real-world settings. 

The predictive success of the Random Forest model aligns with Zhang et al. (2024), validating machine 

learning’s transformative potential to navigate the volatility and complexity of energy demand. 

However, it is crucial to approach such models with caution; while they excel at pattern recognition, 

their ‘black box’ nature necessitates transparent validation and continuous updating to remain relevant 

amid shifting socio-economic conditions. 

Stakeholder-driven MCDA results spotlight the perennial tension between cost, environment, and social 

factors. The prioritisation of Solar PV Expansion underscores growing societal acceptance and 

economic viability of renewables, echoing Lopez et al. (2022)’s emphasis on participatory planning. 

Yet, the modest weighting of social acceptance (0.25) flags that social dynamics still risk being 

undervalued, potentially breeding resistance if overlooked. 

Scenario analyses articulate a familiar but pressing conundrum: environmental ambition often comes 

with economic trade-offs. The increased carbon tax scenario (S2) shows that policy instruments must 

be carefully calibrated to avoid punitive cost burdens that could stifle stakeholder buy-in and energy 

access. Conversely, accelerated renewables (S3) demonstrate that technology-driven transitions can 

deliver superior outcomes with cost savings, but depend heavily on sustained investment and grid 

readiness. 

Sensitivity analyses reinforce the undeniable influence of market and technological uncertainties. Fuel 

price volatility remains a significant risk, highlighting the strategic imperative to diversify energy mixes 

and hedge against fossil fuel dependency. Encouragingly, declining renewable technology costs provide 

a tangible lever for mitigating financial risks and enhancing system resilience. 

Methodologically, this study’s integrated multi-method framework advances beyond the limitations of 

conventional SEM approaches criticised for abstraction and lack of operational detail. By grounding 

analysis in primary, granular data and combining efficiency measurement, predictive modelling, 

MCDA, and optimisation, the research offers a comprehensive, pragmatic blueprint for energy planners. 

However, limitations persist. The absence of a specified geographical scope introduces variability that 

may dampen contextual specificity. Future work could benefit from focused case studies that consider 

regulatory, cultural, and infrastructural nuances. Additionally, while machine learning forecasts were 

robust, the inherent uncertainty in long-term demand projections calls for continuous model refinement. 
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In essence, the findings advocate a balanced, evidence-driven approach to sustainable energy 

planning—one that respects the intricate socio-technical fabric of energy systems and acknowledges 

that technological progress, economic prudence, and social acceptance must advance in concert. 

 

7. IMPLICATIONS 

7.1 Theoretical Implications 

This study extends the existing body of knowledge by demonstrating the effectiveness of a multi-

method analytical framework combining DEA, machine learning forecasting, MCDA, and optimisation 

for sustainable energy planning. Unlike prior works heavily reliant on Structural Equation Modelling, 

this empirically grounded approach offers a more granular, operational perspective. It underscores the 

value of integrating efficiency measurement with predictive and decision-analytic tools to capture the 

complex, dynamic nature of energy systems. Consequently, it challenges researchers to embrace hybrid 

methodologies that better reflect real-world intricacies. 

7.2 Practical Implications 

For energy managers and planners, the findings provide actionable insights into improving operational 

efficiency and demand forecasting accuracy. The identification of significant inefficiencies signals 

urgent opportunities for input optimisation, particularly in fuel and capital utilisation. Furthermore, the 

demonstrated forecasting precision of machine learning models supports more adaptive and reliable 

energy supply planning. The MCDA outcomes, prioritising renewable energy strategies with 

stakeholder input, reinforce the importance of participatory decision-making to enhance acceptance and 

implementation success. Practitioners are encouraged to adopt these integrated tools to design cost-

effective, socially attuned, and environmentally sustainable energy portfolios. 

7.3 Policy Implications 

The contrasting outcomes of policy scenarios reveal crucial lessons for regulators and policymakers. 

While carbon taxation effectively reduces emissions, its associated cost increases caution against heavy-

handed application without complementary measures. Accelerated renewable integration, enabled by 

supportive policies and investment, emerges as a more balanced pathway offering environmental 

benefits alongside economic savings. Policymakers should thus focus on fostering technological 

innovation, infrastructure readiness, and market incentives that lower renewables’ cost barriers and 

increase grid flexibility. Moreover, sensitivity to fuel price volatility suggests that diversification 

policies remain essential to safeguard energy system resilience. 

7.4 Implications for Future Research 

This study highlights several avenues for further investigation. Future research should explore the 

application of the proposed multi-method framework within specific geographical and socio-political 

contexts to enhance contextual relevance. Additionally, advancing explainability in machine learning 

models for energy forecasting would improve transparency and trust among stakeholders. Investigating 

long-term behavioural and social acceptance dynamics remains critical to complement the technical and 

economic analyses. Finally, integrating real-time data streams and adaptive optimisation could further 

strengthen the responsiveness of energy planning models in an increasingly uncertain and fast-evolving 

energy landscape. 

 

8. FUTURE RESEARCH DIRECTIONS 
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Building on the robust multi-method framework established herein, future investigations should seek 

to deepen and broaden its applicability and sophistication. A prime direction lies in contextualising the 

framework within specific geographical regions, where unique regulatory, infrastructural, and socio-

cultural factors intricately shape energy dynamics. Such localisation would enhance the precision and 

practical relevance of insights for policymakers and planners. 

Further refinement of machine learning forecasting models remains essential, particularly in enhancing 

their interpretability and explainability. As energy systems grow more complex, transparent models will 

be crucial for fostering stakeholder confidence and informed decision-making. Incorporating emerging 

data sources such as smart metering, IoT sensors, and real-time grid analytics offers fertile ground for 

elevating predictive accuracy and responsiveness. 

Exploring the social dimensions of sustainable energy transitions warrants intensified attention. Future 

studies should integrate behavioural models and social acceptance metrics alongside technical and 

economic analyses, thereby capturing the full socio-technical fabric that governs energy adoption and 

resilience. 

Finally, advancing dynamic optimisation techniques capable of real-time adaptation to fluctuating 

market and environmental conditions would represent a significant leap forward. Integrating 

reinforcement learning or other adaptive algorithms into energy planning frameworks could enable 

systems that not only plan optimally but also learn and evolve continuously. 

In sum, the journey toward truly sustainable energy systems is ongoing, and future research must 

continue to weave together technical innovation, empirical grounding, and societal insight to navigate 

this complex, ever-changing landscape. 

 

9. CONCLUSION 

This study has charted a comprehensive and empirically grounded pathway for integrated energy 

planning and management, advancing beyond traditional, abstract methodologies. By harnessing 

primary data and combining Data Envelopment Analysis, machine learning forecasting, Multi-Criteria 

Decision Analysis, and optimisation modelling, it exposes critical inefficiencies and unlocks strategic 

opportunities to balance cost, reliability, and sustainability. 

The results affirm that optimised renewable energy integration, supported by nuanced policy 

frameworks and technological adoption, can simultaneously reduce emissions and control costs—a 

crucial revelation for energy planners navigating complex trade-offs. The demonstrated sensitivity to 

fuel prices and technology costs further highlights the dynamic challenges and levers within modern 

energy systems. 

Beyond the technical insights, this research underscores the indispensable role of stakeholder 

engagement and multi-dimensional decision-making in shaping resilient and socially accepted energy 

futures. While limitations exist, the proposed framework offers a replicable blueprint adaptable to 

diverse contexts. 

As energy landscapes continue to evolve rapidly, this paper contributes both methodological innovation 

and practical guidance, illuminating a path toward sustainable, efficient, and robust energy systems 

essential for global climate goals. 
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